

June 2005

File Encryption in .NET using TripleDES and Blowfish

By Drew Hamre

The concept of symmetric encryption is perhaps familiar from

childhood: friends share a single code book, and use the codes

to both encrypt and decrypt secret messages. This technique is

sometimes called shared key encryption, because the same

password and process is used both to hide secrets and reveal

them.

The simplicity of symmetric encryption belies its utility. Today,

businesses commonly use symmetric encryption to encode

communications among internal systems, or to encrypt

archival data. Below, we’ll discuss file encryption using two

popular symmetric algorithms: TripleDES (included with the .NET Framework) and

Blowfish (a widely-available third-party algorithm).

Figure 1 - Symmetric (or shared key) encryption

We’ll also describe a simple Blowfish-based system that was implemented for a

commercial bank. The system provided secure communications between legacy UNIX

and Windows servers that were completely isolated, except for SMTP email.

Beyond .NET encryption: Speed, source-code, and interoperability

Microsoft’s .NET Framework includes comprehensive, well-tested cryptographic

libraries for symmetric (shared key) encryption, asymmetric (public key) encryption,

and hash digests. Given the functionality built into .NET, is it worthwhile to consider

non-standard cryptographic software?

email

mailto:drew.hamre@lexana.net?subject=BlowFish

Some considerations that might justify the effort and risk in extending .NET’s standard

cryptographic libraries: speed, source code, and interoperability.

Speed – Modern encryption algorithms are CPU intensive. While symmetric

algorithms are generally speedier than asymmetric (as much as 10-times faster, in

many cases), there are significant differences among symmetric alternatives. The

symmetric options offered by Microsoft (DES, Triple-DES, RC2, and Rijndael) are not

necessarily the fastest algorithms nor fastest implementations. If massive amounts

of data are encoded in near real-time, processing efficiencies become critical and the

incentive is strong to look beyond the standard libraries.

Source Code –You’d expect that cryptographic secrecy would extend to source

code, and that algorithms and implementations would remain a closely-guarded

black box. The reverse is true: it’s considered good practice among cryptographers

to publish all encryption algorithms so they can be scrutinized and vulnerabilities can

be assessed. (If you hear echoes of the arguments for ‘open source’ software,

you’re probably right.)

Note that publishing an encryption algorithm poses no risk. The strength of modern

encryption algorithms is intrinsic in the mathematics. Encrypted data is vulnerable

only to someone knowing the key, not to someone knowing the algorithm.

In addition to publishing algorithms, it’s also common for implementers to make

cryptographic source code available to scrutiny. Note that Microsoft has not yet

followed suit. While Microsoft has released source code for its .NET crypto

interfaces, its core encryption code for .NET has not been similarly published.

Source code is a boon for developers, and makes it possible (ironically) to plug gaps

within Microsoft’s own cryptography lineup. For example, the .NET Compact

Framework doesn’t support the Security.Cryptography namespace. However, third-

party source is now available for managed code extensions, allowing applications to

offer algorithms such as AES / Rijndaeli (the default for WSE 2.0 security).

Interoperability - When trading encrypted communications (or encrypting and

decrypting files) both ends of the transaction must translate every bit (literally) of

data according to the same binary conventions. This may pose problems when

sharing information across unlike platforms, as systems disagree about byte-orders

within words (the ‘big-endian’ – ‘little-endian’ problem).

One way of assuring cross-platform interoperability is to use identical

implementations of an algorithm, written in a platform-neutral language like Java or

C. Toward this end, there are portable implementations of many encryption

algorithms, including Blowfish (discussed below). If source code is available, then a

single encryption library can be installed and used and on any platform that supports

the implementation language.

We’ll revisit the potential benefits of ‘non-standard’ .NET encryption methods, below.

First, though, we’ll describe using one of .NET’s standard cryptographic libraries to

write a custom utility to encrypt and decrypt files.

Using .NET symmetric algorithms to encrypt and decrypt files

One of the popular uses for symmetric encryption is to protect archival dataii. File

encryption is built into several versions of Windows (including XP Pro) as the

http://www.gotdotnet.com/team/clr/samples/eula_clr_cryptosrc.aspx
http://www.gotdotnet.com/team/clr/samples/eula_clr_cryptosrc.aspx
http://www.mperfect.net/cfAes/

Encrypting File System (EFS). However, EFS1 works only on NTFS and offers no

protection from someone who’s gained access to your logged-on session. For this

reason, hard disk encryption utilities are widely popular.

Some encryption utilities offer the same transparency of operation as EFS, while

extending the breadth of covered files and offering two-factor authentication. Of

course, transparent operation (where authentication derives chiefly from the session

context) presents the same vulnerability as EFS.

Other ‘non-transparent’ utilities must be run manually on a file-by-file basis, using a

password supplied at runtime. .NET’s cryptographic libraries can also be used to

create such a utility. Below we’ll discuss a sample encryption program that prompts

the user for an alphanumeric password, and then uses the password in conjunction

with a symmetric encryption algorithm to encode (or decode) a selected file.

Once encrypted, the target file can only be read by someone using the same

password and crypto algorithm to decrypt the file. To simplify software distribution,

the decryption logic and the encrypted file’s data may be packaged together as self-

extracting executable.

To write custom file encryption software, you can use the .NET symmetric encryption

methods as follows (a variation of an example by Richard Mansfield):

 Write a UI to solicit two user-supplied parameters: input file path and password

 Cryptographically strengthen the user-entered alphanumeric password by

mathematically hashing its value into a byte array. Internally, you’ll use the

hash value as the key to encrypt and decrypt the data. (Don’t worry: the same

password and hash method will always emit the same internal key.)

 Create a .NET-provided cryptographic object (as we do below with

TripleDESCryptoServiceProvider), and then create a corresponding .NET

cryptographic stream. In creating these objects, you’ll need to supply the byte

array containing the hashed key plus an initialization vector (IV). (The IV is a

sequence of random bytes appended to the front of the plaintext. Adding the IV

to the beginning of the plaintext reduces the possibility of having the initial

cipher text block identical for any two files.)

 Associate an output file stream with the cryptographic stream, and read/write

blocks of data until the input is exhausted.

‘ Based on Richard Mansfield ‘s “Keeping Secrets …”

Try

 ' Declare input/output file streams and save size

 Dim fin As New FileStream(inName, FileMode.Open, FileAccess.Read)

 Dim fout As New FileStream(outName, FileMode.OpenOrCreate,

FileAccess.Write)

 fout.SetLength(0)

 Dim totalFileLength As Long = fin.Length

 ' Create cryptographic object and stream

 Dim des As New TripleDESCryptoServiceProvider()

 Dim crStream As New CryptoStream(fout, _

1 EFS combines both symmetric and asymmetric encryption.

http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/WinNETSrvr-EncryptedFileSystem.asp
http://archive.devx.com/security/articles/rm0802/rm0802.asp
http://archive.devx.com/security/articles/rm0802/rm0802.asp

 des.CreateEncryptor(TheKey, Vector), CryptoStreamMode.Write)

 ' Read/write the files

 While totalBytesWritten < totalFileLength

 packageSize = fin.Read(storage, 0, 4096)

 crStream.Write(storage, 0, packageSize)

 totalBytesWritten = totalBytesWritten + packageSize

 End While

 crStream.Flush()

 crStream.Close()

Catch e As Exception

 MsgBox(e.Message)

End Try

The .NET cryptographic object model makes it extremely easy to swap algorithms.

Note the original sample code used DES, while we’ve ‘upgraded’ to TripleDES with

only a few changes (though take care to adjust any internal IV and key-size

parameters, accordingly). In similar fashion, we can extend our .NET code to call a

non-standard encryption library, such as Blowfish.

The Blowfish symmetric encryption algorithm

The Blowfish algorithm was designed in 1993 by mathematician/cryptographer Bruce

Schneier2, author of Applied Cryptography (the discipline’s standard textbook) as

well as other books on security issues. Blowfish is a symmetric block cipher that can

be used as a drop-in replacement for algorithms like DES or IDEA. (Block ciphers

encrypt data in discrete blocks; a chunk of plaintext is read, and then encrypted.)

Unlike IDEA (which is patented), Blowfish is “unpatented and license-free, and is

available free for all uses”.

The Blowfish algorithm has been scrutinized by cryptographers for more than a

decade, and its known weaknesses are limited to constrained cases where the

number of encryption rounds is limited. Blowfish has recently been added to the

Linux kernel, and the encryption technique is now so well-known that it was the

subject of a code-busting subplot during the popular spy series, “24”.

While Blowfish source code is available for many implementations, two resources are

especially valuable to .NET developers. Markus Hahn’s site provides C# source code

for Blowfish encryption, along with validation instructions. The Flowgroup has

extended Hahn’s code around a Stream-derived class for ease of use.

Benchmarking the encryption utility

Encryption performance is hotly contested among both software and hardware

engineers. Alternative algorithms may respond differently to seemingly subtle

hardware changes. The latest generation of Wintel CPUs (especially Itanium, but also

the AMD/Intel extended 64-bit designs) include design considerations that are

tailored to improve cryptographic performance.

Because encryption algorithms show varying sensitivity to such design changes,

cryptographic benchmarking will be an ongoing process. The Windows OS also adds

measurement variability due to process scheduling, data-caching, NTFS-background

2 Schneier is the founder and CTO of Counterpane, a leading managed-security vendor. Schneier’s

monthly newsletter, Crypto-gram, is one of the most valuable sources of security-related news.

http://www.schneier.com/blowfish.html
http://www.schneier.com/blog/archives/2005/04/blowfish_on_24.html
http://maakus.dyndns.org/software.html
http://www.flowgroup.fr/tech_blowfish_us.htm
http://www.princeton.edu/~rblee/ELE572Papers/ArchFastSymmetricKey-austin.pdf
http://www.princeton.edu/~rblee/ELE572Papers/ArchFastSymmetricKey-austin.pdf
http://www.schneier.com/crypto-gram.html

processing, and CPU throttling related to power management. Suffice it to say that

all cryptographic benchmarks should be deeply etched: “Your mileage may vary.”

Blowfish is considered among the top performing algorithms. Benchmarks generally

show Blowfish performing on par with TripleDES, though both are typically slower

than AES/Rijndael. Of course the real issue is performance on our specific system,

which we can test with a simple test harness:

Figure 2 - Test harness for encryption utility

To assess encryption/decryption performance, we’ll first embed a high-resolution

timer into the code. Then we’ll compare timings for straight I/O (writes to an

unencrypted output file) versus encrypted I/O (writes to an encrypted output file)

using both TripleDES and Blowfish. We’ll use different copies of our test file on

alternate runs, to lessen the effect of caching, and then average the results.

On a Pentium 4 laptop, we find the standard .NET TripleDES library consistently

takes a slightly longer time to encrypt than the Hahn/Flowgroup implementation of

Blowfish. However, variability from run to run was such that the Blowfish advantage

was not statistically significant. As expected, straight I/O was consistently faster

than encrypted I/O. The overhead stemming from encryption was far more apparent

for the smaller file than the larger, perhaps because for the larger file the laptop’s

pronounced I/O limitations effectively masked the CPU overhead incurred by

encryption.

http://www.schneier.com/blowfish-speed.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenethowto09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenethowto09.asp

Even in the worst case, the encryption ‘surcharge’ seems not a bad penalty, perhaps,

for adding Blowfish or TripleDES security that is widely held to be unbreakable by

current technology.

Using Blowfish for the automatic decryption of email attachments

The custom commercial banking software mentioned above allowed remote

administration of a Windows NT domain via encrypted email:

 Domain administration requests were issued from a UNIX-based application.

Custom software formatted the request as an XML document, encrypted the

resulting file using Blowfish, and forwarded the file as an email attachment via

SMTP to a ‘mail drop’ (special public folder) on a Microsoft Exchange Server.

 The Exchange Server mail drop was associated with scripts that activated upon

message receipt. The code would retrieve the attachment, decrypt the XML

document using Blowfish, and then perform the embedded administrative

requests. Supported tasks included creating domain accounts, deleting accounts,

and changing account passwords.

To assure byte-by-byte compatibility across UNIX and Windows platforms, a Java-

based Blowfish implementation was used. This single Blowfish source code library

therefore supported encryption and decryption on both platforms. Note there are

also C-language implementations of Blowfish that would offer the same portability.

On Exchange Server 5.5, a script agent was created to hook the Folder_OnMessageCreated

event. (Had this been Exchange Server 2000 or 2003, the folder’s OnSave event sink

would be used.) The event script used CDO to save the encrypted to the file system,

and invoke the Blowfish component.

Summary

This paper looked at alternatives for file encryption, including .NET’s built-in

TripleDES algorithm and custom implementations of the Blowfish algorithm. The

Blowfish alternative demonstrates reasonable encryption/decryption speeds, and also

interoperates with different operating systems and processor architectures.

Resources

The Blowfish Encryption Algorithm by Bruce Schneier
http://www.schneier.com/blowfish.html

Keeping Secrets: A Guide to VB .NET Cryptography by Richard Mansfield
http://archive.devx.com/security/articles/rm0802/rm0802.asp

Platform Neutral and Transparent Encryption … by Zhenlei Cai
http://www.15seconds.com/issue/030310.htm

Coder's Lagoon (including "Blowfish.NET 1.01" and "BlowfishJ 2.14") by Markus Hahn

http://maakus.dyndns.org/software.html

Architectural Support for Fast Symmetric-Key Cryptography (Burke, McDonald, Austin)

http://www.princeton.edu/~rblee/ELE572Papers/ArchFastSymmetricKey-austin.pdf

Encrypting with the Compact Framework on a PocketPC using a "BlowFish" Stream

http://www.flowgroup.fr/tech_blowfish_us.htm

Acknowledgement

Thanks to reviewers for their time and suggestions; any inaccuracies remain mine.

Drew Hamre is a principal of lexana\net and lives in Golden Valley, Minnesota.

i In 2001, the U.S. government adopted the Rijndael algorithm as its new Advanced Encryption Standard

(AES), replacing DES. Rijndael takes its name from its inventors (Joan Daemen and Vincent Rijmen), and
is pronounced "Rhine dahl".

Cryptography is a volatile field, however, and in April 2005 – only two years after NSA approval -

cryptographer D.J. Bernstein claimed his ‘cache timing attack’ could break most real-world AES
implementations, including OpenSSL.

ii The importance of persisting information in encrypted form has been driven home by recent data thefts

from corporations including MCI, Bank of America and Wachovia. Data protection laws in California
(SB1386) stipulate that consumers must be notified if their sensitive information is stolen.

SB1386 lets companies forego notifying customers if the stolen data was encrypted.

http://www.schneier.com/blowfish.html
http://archive.devx.com/security/articles/rm0802/rm0802.asp
http://www.15seconds.com/issue/030310.htm
http://maakus.dyndns.org/software.html
http://www.princeton.edu/~rblee/ELE572Papers/ArchFastSymmetricKey-austin.pdf
http://www.flowgroup.fr/tech_blowfish_us.htm
mailto:drew.hamre@lexana.net

