

May 2005

How Many Bytes in a Zero-Length File?

By Drew Hamre

Here’s a riddle that’s provoked more than a few nightmares for

security administrators: “How many bytes can be stored in

what appears to be a zero-length file?” Using Windows

Alternate Data Streams (ADS), the answer is: “Gigabytes”.

ADS is a little-discussed feature of the Windows NTFS file

system that surfaced (along with several other NTFS

enhancements) in Windows 2000i. In our day-to-day

interactions with files, we perceive each individual file to be a

single stream of bytes. Most software we use, including

Windows Explorer and the standard operating system I/O

routines, treat files in this manner. This is all misleading.

Rather than being a single stream of bytes, files in NTFS can be composed of many

streams. Each file has a default data stream that is unnamed, and most software

interacts with only this stream. However, each file can logically enwrap multiple

named Alternative Data Streams. Assuming the proper I/O APIs are used and the

proper ADS names are referenced, user software has full access to these resources.

Figure 1 - Microsoft's illustration of the ADS architecture

In this paper we’ll demonstrate how to create and manipulate ADSs using both

Windows Explorer and common operating system commands. We’ll discuss tools for

creating, detecting, and editing ADSs. We’ll conclude by reviewing the uses of ADS.

Some are legitimate. Some are frightening.

email

http://technet.microsoft.com/en-us/library/cc781134%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx
mailto:drew.hamre@lexana.net?subject=ZeroLength

Stupid Computer Trick #1: Use ADS to store metadata for .txt files

Most Windows software – including platform utilities such as Explorer and the dir

command – show only the file system’s default data streams. There is no standard

Windows utility that either a) shows whether a file has an ADS, or b) displays the

size of an ADS if encountered. A file that both Explorer and dir report as empty may

have a hidden ADS that contains gigabytes.

Despite ADS’ absence from the Windows UI, Explorer1 may covertly create an ADS

for a file. In the steps below, we’ll use Explorer to supply Word-like document

properties (Author and Version) to a simple ASCII text file. As we’ll see, Explorer will

happily report the file is empty, both before and after the metadata has been added.

Figure 2 – Explorer loads ADS metadata while file remains “0-bytes” long

To recreate this experiment, use Explorer to navigate to a test directory on your

system and then: a) create a new empty file (right-click an Explorer pane and click

‘New …’ |’Text Document’); b) verify that Explorer reports the size as “0” bytes; c)

display the ‘Summary’ tab of the file’s property sheet (right-click, ‘Properties’), d)

enter some values for the pre-configured attributes; and e) accept the property

changes and then re-verify that the file size remains 0-bytes.

How do we know the metadata was loaded into the file’s ADS, rather than being

stored within the internal directory structures used by NTFS? To resolve this

question, we’ll use a third-party ADS detection utility from SysInternals called

streams.exe.

1 Screenshots are from an Administrative account under Windows XP Pro (SP2_gdr.050301-1519).

http://www.sysinternals.com/ntw2k/source/misc.shtml#streams

The Streams utility (for which SysInternals provides C source code) scans a file or

directory tree for the presence of ADS streams. A sample scan follows:

Figure 3 - The 'Streams' utility reports the existence of ADS streams

In the above, streams is executed twice: the first scan finds no alternate data

streams, whereas the second scan (taken after we added metadata via Explorer)

reports two streams: one labeled ‘:char(5)SummaryInformation’, the second labeled

‘4c8cc155 …’ Our metadata has been stored in ‘SummaryInformation’, which

contains 172-bytes of textual and binary data.

Throughout our manipulations, the file (empty.txt) behaves normally, and it will

continue to do so if we add content, rename the file, and so on. All standard platform

utilities (Notepad, Explorer, etc.) interact with the default data stream, and give no

explicit hints that there are additional streams within the file.

Stupid Computer Trick #2: Add custom properties to a .JPG image

Let’s go a step farther and use ADSs to store custom metadata – an XML string

holding arbitrary name/value properties that support licensing and collaborative

editing. We’ll add these extensions to a .JPG image using basic DOS commands.

To replicate the above experiment, a) copy an image to a test directory (and make

note of its size); b) prepare a text file that contains your metadata string (our

sample is listed in the window above); c) and redirect the contents of your metadata

file into a new ADS associated with the image file: (e.g., type metadata.txt >

image.jpg:streamname).

With ADS-detection software (such as SysInternals ‘streams’) we can verify the

existence of the new stream. With an ADS viewer (such as Alex Ionescu’s

StreamWriter.exe) we can view the contents of our stream.

As before, the ADS is ‘invisible’ to most standard platform software. The modified

image file will render normally in our default .JPG viewer, and Windows Explorer will

report no change in the file’s size.

ADS visibility is affected by factors including stream name. In the examples above,

we didn’t give the ADS name an extension, and if we try to view the stream with

Notepad (e.g. Notepad Plane.jpg:Authorship) we’ll receive a file-not-found dialog.

http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=47299&lngWId=1

However, had we applied a .txt extension to the ADS name, we’d be able to read the

ADS with Notepad (e.g., Notepad Plane.jpg:Authorship.txt).

Windows Indexing Service will create ADSs for image files and load thumbnails

In the examples above, we’ve loaded textual data into ADSs. Of course, the streams

can also hold binary data – a capability exploited by the Windows Indexing Service

during image processing. By default, the Indexing Service will create thumbnails of

image files and load these thumbnails into an ADS labeled

‘?Q30lsldxJoudresxAaaqpcawXc’. The binary data loaded to an ADS can also include

executable code, as we’ll now demonstrate.

Stupid Computer Trick #3: Use ADS to hide an EXE

Immediately below, we’ll hide an .exe within another .exe (though note it would

have been equally straightforward to hide an .exe within a more innocuous file type,

such as a .txt or .bmp file).

Figure 4 - Hiding and launching calc.exe from within Notepad

To reproduce the above experiment, copy two .exes to a test directory. Use the

‘type’ command2 to copy one of the executable byte streams into an ADS of the

second executable. When you invoke the named ADS, note that path information

must be provided as in the example above.

Writing ADS-aware software

Microsoft gives a simple example of how to create an ADS (excerpt in C, below):

hStream = CreateFile("testfile:stream",

GENERIC_WRITE,

FILE_SHARE_WRITE,

2
 The ‘type’ command streams bytes from point a to point b, whether ASCII text or binary. Alternatively,

using the ‘copy’ command will create the ADS, but the resulting stream won’t be executable.

http://support.microsoft.com/default.aspx?scid=kb;en-us;319300
http://support.microsoft.com/default.aspx?scid=kb;en-us;105763

NULL,

OPEN_ALWAYS,

0,

NULL);

However, programmatically detecting ADSs is far more difficult than simple I/O.

Sample detection code (too lengthy to include here) can be found in the C-source for

SysInternals’ streams utility and in Visual Basic source for StreamWriter (above).

These code examples all pre-date .NET, and are basically thin wrappers around the

relevant operating system file and I/O APIs.

Calling these APIs from a language like VB is laborious, due to the lack of pre-

defined libraries for the requisite data structures. StreamWriter is noteworthy as it

defines these structures, and is especially laudable for implementing two alternative

approaches to ADS detection, one based on the NtQueryInformationFile() API, the

other based on BackupRead().

Refer to the ‘Resources’ section (below) for the links to these and other examples.

Worms and other malware exploits of ADS

ADSs first came to widespread attention with the IIS ‘$DATA’ bug, which potentially

exposed .asp scripts (rather than the HTML they emitted) to prying eyes, including

connection strings, embedded passwords, and other unfortunate details.

Since then, exploits of ADS include “VBS/Potok-A”, a worm that used Outlook to

spread itself as an attachment. The worm hid part of itself in an ADS associated with

the ODBC.INI file.

Those of us whose job focus isn’t security may be taken aback to learn how

sophisticated the techniques for hiding malware have become. It’s been widely

reported that most commercial anti-spyware detectors miss roughly half of all

infections. The difficulties in finding hidden software can be inferred from the pain

caused by the solutions posing as cures.

The latest hidden-software detector from Microsoft Research (Strider Ghostbuster) is

essentially a brute force solution with the following steps: a) create a comprehensive

directory listing using the potentially infected OS; b) create a comprehensive

directory listing using a clean read-only copy of Win/PE; and c) compare the two

listings via a read-only copy of WinDiff.

Even this laborious process is limited to finding spyware that’s hidden by rootkits

(e.g., hacker toolkits for stealth operations such as subverting the FindFirstFile /

FindNextFile APIs). Strider won’t find malware “that hides in BIOS, Video card

EEPROM, disk bad sectors, Alternate Data Streams, etc” (emphasis added). For these

reasons, most computer ‘forensic‘ toolkits include utilities to detect files with ADSs,

and Frank Heyne’s freeware tool LADS (below) is a popular choice.

Beyond security, ADS also raises concerns over disk space management. Just as

Explorer and dir don’t show space allocated to ADSs, neither do they include ADS

allocations in free space calculations. In other words, I may think I have 2GB free,

but if there’s a 2GB ADS lurking on my drive, I could run out of space at the next

keystroke. As a palliative, Microsoft notes that chkdsk “accurately reports space

used by a user's data files, including alternate data streams.”

http://www.microsoft.com/technet/security/bulletin/ms98-003.mspx
http://research.microsoft.com/rootkit/
http://blogs.msdn.com/oldnewthing/archive/2004/12/28/336219.aspx

FAT Kills: Removing ADSs from a file

Because ADS requires NTFS, the simplest process for removing an unwanted ADS

from a file is to copy it to a non-NTFS volume. (Copy will issue a data loss warning in

these circumstances, and you can decide whether to cancel or proceed.) In typical

use, ADSs may be harder to preserve than remove because common file transfer

practices (FAT-formatted USB stick, email) will generally strip ADSs from the file.

The many legitimate uses of ADS

If you’ve loaded software that requires an NTFS partition, that software probably

requires ADS. Exchange Server 2003, for example, uses ADS to manage states of

message transport under SMTP. Other software uses ADS to hold ‘undo’ information.

Some anti-virus programs write checksums into each scanned file’s ADS. The Win2K

indexing service (as we’ve seen) stashes thumbnails in each graphic file’s ADS. As

we’ve also seen, Explorer allows certain pre-defined propertiesii to be stored in a

file’s ADS, and this could be extended to support arbitrary document properties via a

custom ADS handler.

For a variety of reasons, ADS is becoming indispensable to the Windows environment.

However, it would better serve Windows security if future generations of the user

interface exposed ADS resources and behavior. A simple “Display ADS” option in the

next release of Explorer would do much to ease concerns.

Summary

This paper demonstrated how to manipulate Alternate Data Streams using standard

platform utilities, and discussed available tools for detecting and editing these

streams. The paper reviewed several uses of ADS, both harmful and benign.

Resources

How To Use NTFS Alternate Data Streams
http://support.microsoft.com/default.aspx?scid=kb;en-us;105763

SysInternals "Streams" utility and source
http://www.sysinternals.com/ntw2k/source/misc.shtml#streams

NTFS Data Streams: the true way to hide information and extend your file system

by Alex Ionescu
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=47299&lngWId=1

LADS - List Alternate Data Streams by Frank Heyne
http://www.heysoft.de/Frames/f_sw_la_en.htm

Digital village: Wading into alternate data streams by Hal Berghel & Natasa Brajkovska

Communications of the ACM Volume 47, Number 4 (2004), Pages 21-27

The Dark Side of NTFS (Microsoft’s Scarlet Letter) by H. Carvey
http://www.infosecwriters.com/texts.php?op=display&id=53

Author Filling or Changing Custom Properties
http://www.codecomments.com/archive299-2004-8-268452.html

Acknowledgement

Thanks to reviewers for their time and suggestions; any inaccuracies remain mine.

http://support.microsoft.com/default.aspx?scid=kb;en-us;105763
http://www.sysinternals.com/ntw2k/source/misc.shtml%23streams
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=47299&lngWId=1
http://www.heysoft.de/Frames/f_sw_la_en.htm
http://delivery.acm.org/10.1145/980000/975836/p21-berghel.html?key1=975836&key2=3715686111&coll=GUIDE&dl=GUIDE&CFID=44602060&CFTOKEN=83055205
http://www.infosecwriters.com/texts.php?op=display&id=53
http://www.codecomments.com/archive299-2004-8-268452.html

Drew Hamre is a principal of lexana\net and lives in Golden Valley, Minnesota.

i Microsoft’s Windows 2000 included substantial enhancements to NTFS, including encryption, disk quotas,
reparse points, volume mount points, sparse files, distributed link tracking, and (accessible) alternate data
streams. It’s generally held that ADS resulted from Microsoft’s need to interoperate with the Apple
Macintosh’s Hierarchical File System, and its constructs of a file’s resource and data fork.

ii The ability to store extended, application-specific file properties in an ADS is one of its most enticing

uses, especially where the application file format itself doesn’t support such extensions. Note the familiar
extended properties of Microsoft Office documents aren’t stored in ADS, but rather are stored in the
default stream as part of Office’s OLE 2 Compound Document format.

mailto:drew.hamre@lexana.net
http://support.microsoft.com/kb/q224351/

