

March 2007

A Database Load Generation Utility

By Drew Hamre

Database load generators are software tools that generate

workloads against a target DBMS. These tools emulate user

activity against a database server, allowing you to:

 Assess the behavior of operational components when

running under a simulated workload. For example, the tool

could create a load on a server so as to understand cluster

failover behavior, to create conditions for exercising

operational software, or for evaluating performance

monitoring tools.

 Measure the throughput of a particular database server.

When properly implemented, load generators can be used to create benchmarks

of transactional throughput for a particular database server configuration (for

example, with different levels of memory expansion or various I/O

configurations). Particular benchmarks, including the TPC-C transactional

standard, can be viewed as rigorously-specified, load generation protocols.

This paper presents a custom load generation utility, including source code. This

database load generator (DBLoadGN) consists of two components: 1) a Windows

desktop client program that drives an OLTP workload by emulating a variable

number of ‘virtual’ users; and 2) a custom companion database that optionally

serves as the target of the users’ transactions. The desktop application is written in

Visual Basic .NET (Framework v2.0/VS2005). The companion database can be

implemented in either SQL Server 2005 or Oracle 10g (though this paper will focus

on SQL Server operations).

Load generation tools

Many excellent load generators are available, though they vary dramatically in

complexity and cost. Commercial products are the most sophisticated, and include

tools such as Quest’s Benchmark Factory and Mercury’s LoadRunner.

Commercial load generators may be expensive, especially where the vendor charges

according to the number of emulated users. For testing protocols like TPC-C, these

licensing costs may be prohibitive because of the many ‘users’ needed to fully

saturate a modern database server (due to protocol-mandated wait states, or ‘think

times’). For example, a recent benchmark (4-way 2.6GHz dual-core Opteron)

engaged 171,360 emulated users while attaining 213,986 tpmC.

email

http://www.tpc.org/
http://quest.com/benchmark_factory/
http://www.mercury.com/us/products/loadrunner/
http://www.tpc.org/results/individual_results/HP/HP_ProLiant_DL585_G1_2.6GHz_DC_ES.pdf
mailto:drew.hamre@lexana.net?subject=SQL%20Stress

Simpler, less expensive load generators are available from RDBMS vendors. For

example, Microsoft’s SQL Server 2000 Resource Kit includes the utility, ‘Database

Hammer’ (a replacement for SQL Load Simulator). Database Hammer is a VB6

application (and thus shows its age)1, but its design strategy – wherein a desktop

application spawns multiple objects, each interacting with a target database, is

common to many other tools, including DBLoadGn.

Microsoft also offers SQLIOStress - a utility that measures a system’s I/O capacity –

in addition to a simpler variant, ‘SQLIO’. SQLIOStress (formerly SQL70IOStress)

includes updates for SQL2005 but doesn’t use (or require) SQL Server’s database

engine. Rather, the tool emulates the types of I/O that SQL Server generates. This

emulation is extremely sophisticated, and the SQLIOStress documentation provides a

rare public glimpse into the low-level internal details of the database’s I/O strategies.

Shareware is another source of database load generators, including Alberto Venditti’s

DBStressUtil, published via the CodeProject. This utility, which can be characterized

as a .NET (V1.1) update of Database Hammer, includes improvements beyond the

modernized run-time environment. For example, DBStressUtil de-couples the load

generator from the target database. Rather than hard-coding SQL for a specific test

database (as in Database Hammer), DBStressUtil executes arbitrary external SQL

scripts that can target any database. It includes a default script that targets the

venerable SQL Server sample, NorthWind.

Academic websites also offer load generators, including implementations of the TPC-

C standard (here and here). Note these TPC-C implementations are Linux-centric,

complex, and admittedly rough (and therefore unlikely to generate sanctioned

results).

Against these many alternatives, DBLoadGn offers a mix of benefits: it’s free, source

code and a custom transactional workload are included, it’s written for Microsoft’s

latest .NET runtime, it’s simple to install and use, it supports both SQL Server and

Oracle on both x32 and x64, and it handles difficult operational scenarios such as

cluster failovers. However (as with other non-commercial packages), DBLoadGn is

capable only of generating private benchmarks, not public.

Public versus private benchmarks

Any repeatable workload can provide a benchmark of computing performance. In

fact, if large datasets are available, even repeated backup operations can provide

valuable metrics. However, not all benchmarks are equally sensitive to system

differences, nor are all benchmarks applicable across multiple vendors or clients. In

this context we distinguish public benchmarks (such as TPC-C, SPECint, Linpack, and

others) from private benchmarks (including results from DBLoadGn).

Public benchmark protocols are designed and monitored by industry and academic

groups. Because such tests are recognized by multiple vendors, the benchmarks

provide valuable cross-platform performance comparisons and help assess solution

costs. Because the algorithms are mature and exhaustively reviewed, the

1 Microsoft hasn’t released a SQL2005-equivalent of ’Database Hammer’, but the old utility can be used

against the newer DBMS (though limited to legacy connection objects and the VB6 runtime environment).
For the .NET environment, Microsoft offers Application Center Test which simulates loads against web
applications (and thus indirectly places loads on back-end databases, as did an earlier utility – Microsoft’s
WAS (Web Application Stress) tool).

http://www.microsoft.com/technet/prodtechnol/sql/2000/reskit/part11/c3961.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/sql/70/reskit/part6/sqc08.mspx?mfr=true
http://support.microsoft.com/?id=231619
http://www.microsoft.com/downloads/details.aspx?familyid=9A8B005B-84E4-4F24-8D65-CB53442D9E19&displaylang=en
http://www.codeproject.com/vb/net/DBstressUtil.asp
http://www.infor.uva.es/~diego/tpcc-uva.html
http://www.cs.earlham.edu/~charliep/benchmarks/tpc/tpc-c/
http://support.microsoft.com/kb/307492/

benchmarks are sensitive to a broad range of performance influences. However, this

complexity and maturity comes at a price, and the only programs capable of

generating auditable transactional benchmarks tend to be high-end commercial

packages (such as LoadRunner) or mature proprietary software from the DBMS or

hardware vendor. In addition, auditable tests require experienced specialists.

Private benchmarks (such as those created by DBLoadGn or by a dataset backup)

may be an appealing alternative if relative performance is the concern (for example,

measuring throughput on a 4-gigabyte system, and then again after expanding to

16-gigabytes). Private benchmarks allow the comparison of different server models

and I/O configurations, and can quantify the impact of a design change. They may

be configured with representative transactional workloads, and their simplicity is well

suited to repeated use by operational staff. However, private benchmark results may

be compared only to results obtained from the identical toolset; comparisons can’t be

made to results from other tools or to results from other test protocols.

For a deeper appreciation of the complexity of mature public benchmarks, refer to

the latest TPC-C Standard Specification document, or to Jan Mulder’s recent TPC-C

‘primer’.

An overview of DBLoadGn

DBLoadGn adopts an approach similar to Database Hammer and DBStressUtil

(above). The chief components of DBLoadGn are its client program and an optional

companion database. The client program reads a batch of database commands, and

then spawns a set of threads, each of which loops through the command batch,

repeatedly executing the commands against the target database. See Figure 1.

Figure 1: Overview of DBLoadGn Processing

Each background thread (and there may be many hundreds) emulates an interactive

database user who is issuing database commands. These commands may be either

simple one-line SQL statements or may invoke complex stored procedures.

To increase the load created by DBLoadGn and help drive server saturation, the

‘think time’ between each command can be shortened, or the number of ‘virtual

users’ may be increased (and the latter is the preferred method.) The client program

http://www.tpc.org/tpcc/spec/tpcc_current.pdf

interface is typically used by a DBA or test administrator, and is shown below in

Figure 2.

Figure 2: DBLoadGn After 2-Minute Timed Demonstration

The commands issued by DBLoadGn can target any accessible database. However,

DBLoadGn’s default workload runs against a custom companion database that is

created on the target server specifically to support DBLoadGn testing. This database

is modeled after a typical transactional ‘order entry’ design.

The default workload scenario is implemented as a collection of stored procedures,

which are called by the client program. These procedures loosely mimic the TPC-C

transaction profile, emulating an order-entry system with a percentage mix of

transaction types as follows:

 Insert new order (roughly 40%) -- The new order transaction consists of inserting

an order, along with a varying number of corresponding order detail records.

 Update quantity (roughly 30%) – For a randomly-selected order, this transaction

updates the quantity value on all associated order detail records.

 Get order value, get category summary, and other lookup/reporting operations

(roughly 30%) These query operations include retrievals to a) get the value of an

order (sum across order detail records for a particular randomly-generated order

ID); b) get the total quantity for a given product category name; and c) get total

sales for a given fiscal year

The schema for the custom companion database is shown in Figure 3 below:

Figure 3: DBLoadGn Companion Database Schema

Installing the DBLoadGn client software

The DBLoadGn desktop client software runs under either Windows XP or Windows

Server 2003 (x86 or x642). Microsoft’s .NET Framework 2.0 Data Provider is used for

both SQL Server and Oracle. For full Oracle functionality, Oracle client software must

also be loaded on the DBLoadGn system. (At the time of testing, Oracle's ODP.NET

managed provider couldn’t be used due to reliability issues on x64.3)

To load the DBLoadGn client software, copy DBLoadGn.exe and the associated

default command files (commands.ora and commands.sql) to the target system as

shown in Figure 4. The command files must be copied into the same directory as the

.exe file. All files are included toward the end of this paper.

2 When compiling DBLoadGn to run under Windows Server 2003 (x64), change VS2005’s target CPU from
the default (AnyCPU) to x86 to avoid runtime errors when linking to the Oracle client libraries.

3 The Microsoft interfaces require System.Data.OracleClient.dll and import System.Data.OracleClient. By

contrast, the Oracle interfaces require oracle.dataaccess.dll and import Oracle.DataAccess.Client. All
Oracle tests with DBLoadGn used version 10.2.0.2.20 of Oracle’s client libraries for Windows, and ran
against remote Oracle 10g databases (both RAC and non-RAC) running under SUSE Linux 9/SP3 (x64).

Categories

CategoryID

CategoryName

Description

Customers

CustomerID

RegionID

CompanyName

ContactName

City

State

PostalCode

Country

MultiRegion

MultiRegionID

MultiRegionDescription

OrderDetails

OrderID

ProductID

UnitPrice

Quantity

Discount

Orders

OrderID

CustomerID

SalesRepsID

FiscalYear

OrderDate

RequiredDate

ShippedDate

Products

ProductID

ProductName

VendorsID

CategoryID

QuantityPerUnit

UnitPrice

UnitsInStock

UnitsOnOrder

ReorderLevel

Region

RegionID

MultiRegionID

RegionDescription

SalesReps

SalesRepsID

RegionID

ReportsTo

LastName

FirstName

Title

City

State

PostalCode

Country

CellPhone

Vendors

VendorsID

RegionID

CompanyName

ContactName

City

State

PostalCode

Country

Figure 4: DBLoadGn's Installation Directory

The DBLoadGn client program can target any database to which it can connect,

either locally (where the database is on the same system as the client software) or

across a network. When benchmarking, the DBLoadGn client should be executed

from a remote system rather than on the database server’s system. This gives the

DBMS full access to the server’s resources, without competition from the emulated

clients.

Installing the DBLoadGn companion database

The DBLoadGn companion database is created by running load scripts on the target

database server. The scripts perform the following tasks in sequence:

 Create the test database and its tables.

 Create stored procedures and constraints.

 Create indices to improve performance.

 Populate the lookup tables with initial data. Note that the Orders and

OrderDetails tables won’t have any records added during installation; instead,

records will be inserted here during DBLoadGn test runs.

DBLoadGn processing flow

DBLoadGn consists of two VB.NET modules, 1) a Windows form that implements the

application UI and supporting logic, and 2) a class module that implements the

virtual user. To run a benchmark, testers enter runtime parameters and click ‘Run’,

activating a startup timer that fires periodically, each time instantiating a new virtual

user. The timer de-activates itself once the requested number of users are created.

Each of the newly-created virtual user objects loops through a batch of database

commands. For performance tracking purposes, DBLoadGn accumulates the elapsed

time spent processing each command using high-resolution performance counters.

DBLoadGn will run for an indefinite period, either until manually stopped, or - for

timed tests - until the requested test interval has ended.

DBLoadGn activity reports

At the end of a test, DBLoadGn summarizes the results in its client interface,

including the following measures (see Figure 2, above):

‘Active Users’ – This count reflects the current number of active threads (‘virtual

users’). The count is initially zero, but is updated dynamically once the test run

begins. It shows the progress in creating the requested number of background

threads. It drops to zero as the test ends.

‘Update Counts’ – This command button can be clicked during ad hoc tests. Once

clicked the main program will iterate through each background thread, and calculate

the current number of successfully completed commands and transactions.

Database Performance Summary – At the completion of a test run, DBLoadGn

will echo additional summary information:

 Start Time, End Time, and Duration show the overall span (wall-clock) of the test

 Command Time is updated to show the total wait time across all threads. This is

calculated as (command_completion_time – command_start_time) and summed

for all commands, and then accumulated across all threads. Because of the

number of threads, and because this reflects wall-clock time, the total Command

Time may be a larger interval of time than Test Duration. The average time to

complete any single command is reported as Secs/Command.

 Transactions/Minute is a key summary statistic, but is available only if the default

companion command files and database are used. If this default workload is

used, then DBLoadGn has enough information to convert the raw

commands/minute rate into a measure of completed transactions/minute. Note

again that this metric relates only to DBLoadGn, and is not equivalent to or

expressible as the tpmC standard.

Performance and Error Logs - DBLoadGn emits a single CSV-formatted

performance log for each run; it’s written to the same directory as the exe, and its

name is date-stamped to allow multiple logs to be stored in the same location. In

addition to the performance log, each ‘virtual user’ thread may create an error log

file, should they encounter an exception. The error logs’ filenames are based on the

performance log name, with the thread’s sequence number appended (e.g., ‘061013-

175240.csv’ might be accompanied by ‘061013-175240-err-35.log’).

Using DBLoadGn to drive system load

DBLoadGn can be used to create operational loads on a system. For example, it can:

 Emulate user activity during cluster failover (shown below)

 Emulate user conditions for testing ‘hot’ backups or disaster recovery

 Drive extreme system loads so as to test SLA alert thresholds

In Figure 5 (below), DBLoadGn was used to push transactions against a virtualized

SQL Server instance running on a two-node PS cluster. When the active node

(Server01, the red line) was disabled, PS moved the running database instance to

the second node.

After a brief interruption during failover, DBLoadGn transactions resumed on

Server02 as indicated by a jump in Server02’s processor activity (blue line). After a

minute, the SQL Server instance was returned to its original node via PS’s Dynamic

Re-Hosting. Note that because the DBLoadGn desktop client connected to SQL

Server via a virtualized server address (courtesy of DNS and PS), the application’s

connection string remained unchanged throughout both failover and fallback.

Figure 5: DBLoadGn transactions during cluster failover / fallback

Note that both database instance moves (first to the standby node, then back to the

original) occurred comfortably within a five-minute test window – an impressive

performance given the high transaction rates (> 100,000 TPM) being recorded.

Although DBLoadGn is able to remain ‘alive’ during cluster failover, it requires heavy-

handed error-trapping to do so – primarily because .NET connection pools often

become corrupt after a connection failure. To help make retries more graceful,

Microsoft is enhancing their software and adding new language operators (ClearPool

and ClearAllPools), releasing an operating system hotfix, and (for database

mirroring) adding new connection parameters (Failover Partner=;).

Using DBLoadGn to measure system performance

DBLoadGn can be used to generate private benchmarks of system performance. To

do so, run DBLoadGn repeatedly with increasing numbers of virtual users (and

therefore, increasing transaction requests). Increase the user count until the server

becomes saturated and the transaction curve flattens as the server has no capacity

for additional work. The number of completed transactions/minute at this saturation

point is DBLoadGn’s estimated private benchmark of maximum throughput.

The results below contrast performance for SQL Server 2005 across samples of three

classes of hardware: laptop, desktop, and server.

In these examples, DBLoadGn was run repeatedly on a laptop, first with 25 virtual

users (attaining 15.7K TPM), then with 50 users (26.6K TPM), then with 100 users

(33.4K TPM), and finally with 150 users (32.6K TPM). The estimated maximum

DBLoadGn TPM rating for the system is therefore roughly 33,000. Note also that

once saturation is reached for the system, performance typically degrades slightly for

the next higher test increment, as system inefficiencies appear under stress. See

Figure 6.

http://blogs.msdn.com/angelsb/archive/2004/10/05/238153.aspx
http://support.microsoft.com/kb/913176
http://msdn2.microsoft.com/en-us/library/ms366348.aspx

Figure 6: DBLoadGn and Relative System Performance

Similar tests on more powerful hardware yielded correspondingly faster results,

peaking at roughly 51,000 TPM for a desktop system and roughly 207,000 for a

DL585. Note that DBLoadGn needs far fewer ‘users’ to generate these transaction

rates than corresponding TPC-C software because DBLoadGn’s ‘think times’ (inter-

command wait intervals) are nearly nonexistent (whereas TPC-C think-times are

lengthy so as to emulate ‘actual’ user behavior). In addition, TPC-C transactions are

far more complex than DBLoadGN’s.

DBLoadGn limitations and enhancements

DBLoadGn is limited to a maximum of slightly more than 1400 virtual users per

active instance of the desktop program. Planned enhancements include improved

reporting, a re-scaled workload (more complex transactions with larger row sizes),

and an automated ‘seek’ function for performance maximums.

Additional Resources

How to Set Up a SQL Server Stress Test Environment in 8 Steps by Geert Vanhove
http://www.sql-server-performance.com/gv_stress_test_lessons_3.asp

Acknowledgement

Thanks to reviewers for their time and suggestions; any inaccuracies remain mine.

http://www.sql-server-performance.com/gv_stress_test_lessons_3.asp

Summary

This paper describes a customizable database load generator with two components:

1) a Windows desktop program that drives an OLTP workload by emulating a variable

number of ‘virtual’ users; and 2) a companion database that serves as the target of

the virtual users’ transactions. The tool generates transactional workloads to

measure relative system performance, or to help perform operational assessments.

Drew Hamre is a principal of lexana\net and lives in Golden Valley, Minnesota.

mailto:drew.hamre@lexana.net

