

March 2007

Using WSRM to Track SQL Server’s Resource Usage

By Drew Hamre

Microsoft’s Windows System Resource Manager (WSRM) is a

workload management tool included with Windows Server

2003 Enterprise or Datacenter1. Administrators can use WSRM

to control how CPU and memory are shared among competing

processes. WSRM is typically used to normalize consolidated

workloads (reducing the risk that a misbehaving application

will interfere with others on the system), or to ensure

predictable response times for remote terminal users.

Less well known is WSRM’s built-in accounting capability,

which tracks the resources consumed by system and

application processes. When running consolidated SQL Server instances, this

information has advantages as a source for allocating system costs. In this paper

we’ll review WSRM and pay special attention its role in chargeback accounting for

SQL Server.

An overview of WSRM

WSRM allows system administrators to set resource consumption policies for CPU

and memory. Administrators select the processes to be managed, and then set

resource consumption targets. WSRM will apply these policies based on a date/time

schedule, and manage the system according to these active policies. It can generate

alerts for policy events, and can track resource consumption (discussed below).

WSRM is written in C++ and implemented as a Windows service. This service is

installed on each system where WSRM is required, and runs with LocalSystem

authority. A separate administrative UI (written in C#) may be installed only on a

single system, from which the other WSRM installations can be managed remotely.

Machine resources are allocated according to policies for CPU utilization (percent

CPU), process working set size (physical resident pages), and committed memory

(page table and page file usage). WSRM controls CPU allocations by adjusting

process priorities. When a process exceeds its administrator-defined share, WSRM

1 WSRM is included with Microsoft’s Windows Server 2003 Enterprise/Datacenter media (though it

requires a separate install), or it can be downloaded from Microsoft’s site. The installation kit has been
updated for SP1/R2 and includes versions for 32-bit, x64, and Itanium CPUs. For Windows, WSRM
essentially replaces a third-party tool (a version of Aurema’s ARMTech) that was bundled with Windows
2000 Datacenter.

email

http://www.microsoft.com/windowsserver2003/technologies/management/wsrm/default.mspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=848306ef-f57e-4b3f-984d-50e9bca44383&displaylang=en
http://www.aurema.com/products/application_resource_management/server_consolidation/windows_server.php
mailto:drew.hamre@lexana.net?subject=WSRM

lowers its priority. Unused resources are reallocated to other processes according to

administrator-defined policies.

WSRM can adjust two aspects of memory utilization: a process’s working set size and

its committed memory size. WSRM can prevent a process’s working set (those virtual

pages that reside in physical memory) from exceeding a specified limit by calling

kernel functions (i.e., Get/SetProcessWorkingSetSizeEx).

WSRM can also enforce limits for committed memory (the physical memory for which

space has been reserved on the paging file). Increasing consumption of committed

memory may be symptomatic of a memory leak. As committed memory cannot be

taken back by the operating system, WSRM can either terminate the program or

write a diagnostic error to the event log.

Limitations of WSRM resource management

While WSRM helps manage CPU and memory, it does not manage I/O, either storage

or network. This may be an important limitation, especially if grappling with

workloads that are I/O bound.

Another limitation is that WSRM manages application processes only. System

processes should be excluded, and WSRM contains such a default exclusion list.

(Note there’s also an optional ‘application exclusion’ list that may be used, though

it’s empty to start.) Administrators shouldn’t exclude applications that launch other

processes (for example, mmc.exe), lest the launched programs (now unmanaged)

consume available resources.

WSRM memory limits do not apply to Address Windowing Extensions memory, or

large page or kernel memory. WSRM can’t be used with other resource managers, or

with applications that set their own priorities. Further, WSRM works independently of

application parameters that control resource sharing, and should sometimes defer to

these settings. In managing SQL Server, for example, WSRM’s memory and CPU-

affinity policies should not be set, deferring instead to SQL Server’s native switches.

‘Managing’ versus ‘profiling’ policies

Note there are two policy types within WSRM: a managing policy that controls

resource allocation for the server; and a profiling policy that simply logs information

about a policy’s effects, without controlling allocations. Profiling policies allow you to

use WSRM only to capture accounting information, not to manage resources. We’ll

use profiling policies when configuring WSRM for accounting (below).

Using WSRM accounting to track resource usage

WSRM ‘Resource Accounting’ accumulates histories of process-level system usage.

The accounting option is enabled during installation (Figure 1), or from within

WSRM’s administrative console. Once enabled, WSRM will periodically sample and

record resource counters for all OS processes (both application and system).

This information is summarized every 10-minutes (though this interval can be

modified) and persisted in a dedicated JET Blue (‘ESE’) database. WSRM’s console

includes a retrieval UI, allowing this information to be aggregated, sorted and

filtered. Even more helpful to production systems, the data can be exported in tab-

delimited, SMF, or CSV formats (below). Exported data can then feed into

downstream processes to be used for chargeback accounting, to assess system

performance, and to help project future infrastructure needs.

http://book.itzero.com/read/microsoft/0507/microsoft.press.microsoft.windows.internals.fourth.edition.dec.2004.internal.fixed.ebook-ddu_html/0735619174/ch06lev1sec5.html
http://windowssdk.msdn.microsoft.com/en-us/library/ms684493.aspx

Figure 1: Accounting enabled during WSRM installation. Accounting can also be
enabled/disabled from WSRM's administrative UI

Which metrics does WSRM record?

WSRM’s accounting is broader in scope than its resource management:

 Accounting tracks all processes, both application and system

 Accounting includes metrics for all points of contention, including I/O

For each process on the system, WSRM periodically records metrics such as PID,

process start time, kernel time, total CPU time, handles, thread count, I/O bytes,

authentication context, initial command line, EXE file/path, and so on. The list in

Table 1 (below) is from WSRM’s help files, with descriptions edited to save space.

Accounting data Description

Allocation Name Resource-allocation policy associated with the accounting data

Creation Time Date/time the accounting record was created

Domain Domain or workgroup of the user who created the process

Program Path Directory path to the process’s executable file

Kernel Mode Time

(MS)

Time in kernel mode

Other Operation

Count

Number of I/O operations that are neither reads nor writes

(for example, a control function). This counter counts all I/O

activity generated by the process

Other Transfer

Count (KB)

KBs transferred in input and output operations excluding reads

and writes (e.g., by control functions).

Page Fault Count The number of page faults

Page File Usage

(KB)

Amount of virtual memory reserved in paging files

Peak Page File

Usage

The maximum amount of virtual memory that this process has

reserved for use in the paging files

Peak Virtual Size

(KB)

The maximum virtual address space the process has used at

any one time.

Peak Working Set

Size (KB)

The maximum size of the working set of this process at any

point in time

Private Page Count

(KB)

Current number of pages allocated that are accessible only to

this process.

Process Name The name of the process associated with the accounting record

Quota Non-Paged

Pool Usage

Current non-paged pool usage for the process, in kilobytes

Quota Paged Pool

Usage

Current paged pool usage for the process, in kilobytes

Quota Peak Non-

Paged Pool Usage

Peak non-paged pool usage for the process, in kilobytes

Quota Peak Paged

Pool Usage

Peak paged pool usage for the process, in kilobytes

Read Operation

Count

The number of read I/O operations generated by the process,

including file, network and device I/Os

Read Transfer

Count (KB)

The number of kilobytes read in I/O operations, including file,

network and device I/Os

Session ID The Terminal Services session identifier that owns the process

Thread Count The number of threads currently active in this process.

Total CPU Time

(MS)

The total time, in milliseconds, that the threads of the process

used the processor to execute instructions.

User The name of the user who started the process.

User Mode Time

(MS)

The elapsed time the processor spends in user mode

Virtual Size (KB) The current size of the process’s virtual address space

Working Set Size The current size of the working set (the set of memory pages

(KB) recently touched by the threads in the process)

Write Operation

Count

The number of write I/O operations generated by the process

Write Transfer

Count (KB)

The number of kilobytes written in write I/O operations

Table 1: Metrics tracked by WSRM

WSRM and SQL Server consolidation

SQL Server database consolidation is a reaction against SQL Server sprawl. Rather

than accepting de facto corporate deployments (large numbers of lightly-loaded

systems, each running stand-alone copies of SQL Server dedicated to a single

application), businesses are combining database applications and running them on

fewer servers.

In planning SQL Server consolidations, a fundamental decision is whether to combine

application databases into a single SQL Server instance, or whether to host multiple

SQL Server instances, each containing a single consolidated application. WSRM

accounting is well suited to the latter approach (multiple SQL Server instances)

because the instances are each exposed as separate OS processes. Therefore, WSRM

can track the resources used by each individual DBMS instance, which in this case is

linked to a particular consolidated application.

Figure 2: When SQL Server databases are consolidated using multiple instances, each
runs as an operating system process that’s visible to WSRM

Of course, multiple-instance architectures apply only to those pieces of SQL Server

that are instance aware. In SQL Server 2005, this includes most significant

processing components including the database engine and SQL Agent, analysis

services, and reporting services. Each instance of these components will run as a

separate process, and can be tracked individually by WSRM accounting.

Note that SQL Server 2005’s ETL sub-system, Integration Services (SSIS), is not

instance aware. All resources used by SSIS on a system will occur within a single

operating system process, and WSRM won’t be able to discern which consolidated

application is associated with the ETL activity. In this case, it may be simplest to

treat SSIS as a shared resource with costs split among stake-holders.

Identifying specific SQL Server instances in WSRM accounting data

One of WSRM’s advantages as a source for chargeback data is that it’s easy to link a

particular SQL Server instance with the process resources it consumes. WSRM data

includes a field (‘Command Line’) with this information, captured with the start-up

command for the service. In the data in Table 2 below, records associated with SQL

Server instance “A0000301” (highlighted) can be identified by this parameter.

Time Stamp
Process
Id Command Line

1/20/2007 19:43 8684 C:\...\Microsoft SQL Server\MSSQL.2\MSSQL\Binn\sqlservr.exe -sA0000301

Table 2: With WSRM, SQL Server operating system processes and the resources they use
are identified by the corresponding SQL Server instance name

Because WSRM consumption data is linked to the corresponding SQL Server

instance, it’s far easier to use WSRM data for chargeback than PerfMon data.

PerfMon identifies process-level consumption data only by PID (process ID, which

varies each service startup) or by PerfMon-generated labels based on start-up

sequence (e.g., "sqlservr", "sqlservr#1", etc.). PerfMon data may be customized so

that process-level data is identifiably linked to a particular instance2, but the

technique is cumbersome and more intrusive than simply using WSRM.

Although this paper focuses on using WSRM accounting with SQL Server, we should

also note that WSRM simplifies tracking Terminal Server sessions. Terminal Server

processes are spawned with a user's credentials, and can be tracked accordingly.

The length of a user’s terminal server session (connected time) can be found by

tracking explorer.exe, as this shell starts when the user logs on and terminates when

the user logs off.

2 If PerfMon data must be used, one solution is to define custom PerfMon counters for each SQL Server

instance, and then load these counters with a numeric constant that identifies the instance, cross-
referenced with corresponding OS PID (retrieved via a startup query). Refer to the sample below.

-- PerfMon sample showing how to load SQL Server “instance markers” at service startup.

-- -- 1) Load a custom counter with a numeric constant identifying the instance

exec sp_user_counter1 5

-- -- 2) Load another custom counter with the instance’s PID (varies)

declare @ProcessID int

SET @ProcessID = CAST((SELECT SERVERPROPERTY ('processid')) AS int)

exec sp_user_counter2 @ProcessID

http://www.google.com/search?hl=en&q=perfmon+pid+%22sql+server%22+instance+

Tips and tricks for using WSRM accounting

While WSRM has significant advantages as a source of chargeback data, developers

should be cognizant of the following when building such a system:

Accounting data must be regularly exported

Accounting information accumulates in WSRM’s database, which expands

accordingly. To keep its size manageable, historical data must be periodically

archived and deleted. Additionally, the ESE information isn’t easily accessible, and

periodic exports will make the information more accessible to downstream software.

@Echo OFF

TITLE DumpWSRM

:DumpAcct

REM Periodically export WSRM accounting data

REM ---

Set CURRDATE=%TEMP%\CURRDATE.TMP

Set CURRTIME=%TEMP%\CURRTIME.TMP

DATE /T > %CURRDATE%

TIME /T > %CURRTIME%

REM Swap %%k%%j for different MMDD order

Set PARSEARG="eol=; tokens=1,2,3,4* delims=/, "

For /F %PARSEARG% %%i in (%CURRDATE%) Do SET YYYYMMDD=%%l%%j%%k

Set PARSEARG="eol=; tokens=1,2,3* delims=:, "

For /F %PARSEARG% %%i in (%CURRTIME%) Do Set HHMM=%%i%%j%%k

REM Echo %YYYYMMDD%%HHMM%

wsrmc /get:acc /archive:1 /o:c:\WSRMLogs\WSRM-%YYYYMMDD%%HHMM%.txt

/sd:1/01/06 /ed:1/01/08 /del

REM Wait timeout seconds

timeout /t 600 /nobreak

goto DumpAcct

:END

The above command file periodically exports WSRM accounting data to a uniquely-

named file (date/time stamped). The highlighted command uses WSRM’s command-

line interface (“wsrmc”) to export accounting information in CSV format

(“/archive:1”), and then remove the exported records (“/del”).

Total CPU is cumulative, and must be normalized for multiple CPUs/cores

Table 3 below shows a fragment of exported WSRM accounting data. This fragment

has been filtered to show only a single process, and includes only three measures,

plus a calculation. The calculation (final column) shows the Proportion of CPU used

by this process during each measurement interval.

Time Stamp Total CPU Time (ms) Elapsed Time (ms) Proportion CPU,

calculated as:

(Interval_CPU /

Interval_Elapsed)/
CPU_Core_Scaling

1/20/2007 19:51 1538891 7503634 N/A

1/20/2007 19:53 1567157 7623729 0.029

1/20/2007 19:55 1593922 7743776 0.028

1/20/2007 19:57 1620906 7863808 0.028

1/20/2007 19:59 1648516 7983840 0.029

1/20/2007 20:01 1669047 8103888 0.021

1/20/2007 20:03 1686516 8223920 0.018

1/20/2007 20:05 1761344 8343983 0.078

1/20/2007 20:07 2076813 8464046 0.328

1/20/2007 20:09 2468031 8584125 0.407

1/20/2007 20:11 2877063 8704204 0.426

1/20/2007 20:13 3293125 8824268 0.433

Table 3: Subset of WSRM data with “Proportion CPU” calculation.

To calculate the overall proportion of CPU used during each interval, please note:

 “Total CPU Time” accumulates continually, and therefore the CPU time used in

any single interval is calculated as that interval’s (accumulated) total, less the

previous interval’s total.

 CPU times are process totals across all threads, summed across all CPUs and

cores. In the above example (DL585 with four dual-core Opteron CPUs), the

raw aggregate CPU must therefore be divided by 8 (the number of effective

CPUs) to convert this value to a proportion of overall system CPU resources.

WSRM accounting data must be cleaned

Raw WSRM accounting data may contain spurious information that will need to be

filtered and cleaned as part of any accounting or chargeback process. Data profiling

and outlier identification should be part of any dataflow using this information.

WSRM and clusters

Two aspects of WSRM’s behavior on clusters should be noted:

 WSRM policies are server-specific, not cluster-wide. A WSRM-managed

application which fails-over from Node-1 to Node-2 will then be managed by

the policies defined for Node-2 (or will be unmanaged if policies for that

application don’t exist).

 Cluster automation software, including Matrix Server from PolyServe, may

stop/start services to automate failover and fallback. In this situation (as well

as more generally), remember that WSRM tracks active processes, not

installed processes. For example, a SQL Service that’s stopped will disappear

from WSRM’s accounting snapshots. Also note that re-started services are

assigned different PIDs (Process IDs) by the operating system.

Cluster interactions are sufficiently complex to warrant a whitepaper by Microsoft.

http://www.microsoft.com/downloads/details.aspx?FamilyID=ba2559e6-dd23-41a6-9efb-1d90f8f1fc17&displaylang=en

 Additional Resources

Microsoft Windows System Resource Manager Overview (KB1413) by Andrzej Switka
http://cgscomm3.inet.cpqcorp.net/Technology/Documents/Knowledge%20Briefs/Q3FY04/KB1413.doc

WSRM Command-Line Interface (Microsoft whitepaper)
http://download.microsoft.com/download/a/7/a/a7a06462-1d80-4386-9505-
91cca1e61940/WSRM%20Command-Line%20Interface.doc

Using WSRM and Scripting to Manage Clusters (Microsoft whitepaper)
http://www.microsoft.com/downloads/details.aspx?FamilyID=ba2559e6-dd23-41a6-9efb-
1d90f8f1fc17&displaylang=en

WSRM Accounting (Microsoft whitepaper)
http://download.microsoft.com/download/d/2/5/d2524d17-b893-46f9-bebe-
b1f7b927e144/Windows%20System%20Resource%20Manager%20Accounting.doc

Acknowledgement

Thanks to reviewers for their time and suggestions; any inaccuracies remain mine.

Summary

WSRM is typically used to allocate CPU and memory resources among competing

applications. Less well known is WSRM’s accounting capability, which tracks

applications’ resource consumption. During SQL Server consolidations, WSRM’s

accounting data may ease the development of chargeback software, allowing system

costs to be apportioned according to metered use.

Drew Hamre is a principal of lexana\net and lives in Golden Valley, Minnesota.

http://cgscomm3.inet.cpqcorp.net/Technology/Documents/Knowledge%20Briefs/Q3FY04/KB1413.doc
http://download.microsoft.com/download/a/7/a/a7a06462-1d80-4386-9505-91cca1e61940/WSRM%20Command-Line%20Interface.doc
http://download.microsoft.com/download/a/7/a/a7a06462-1d80-4386-9505-91cca1e61940/WSRM%20Command-Line%20Interface.doc
http://www.microsoft.com/downloads/details.aspx?FamilyID=ba2559e6-dd23-41a6-9efb-1d90f8f1fc17&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=ba2559e6-dd23-41a6-9efb-1d90f8f1fc17&displaylang=en
http://download.microsoft.com/download/d/2/5/d2524d17-b893-46f9-bebe-b1f7b927e144/Windows%20System%20Resource%20Manager%20Accounting.doc
http://download.microsoft.com/download/d/2/5/d2524d17-b893-46f9-bebe-b1f7b927e144/Windows%20System%20Resource%20Manager%20Accounting.doc
mailto:drew.hamre@lexana.net

