

February 2006

In Other Words: Expanding Queries with WordNet

By Drew Hamre

WordNet® is a digital dictionary that preserves and navigates

the semantic relationships among words. Whereas a typical

dictionary is organized alphabetically - and words with similar

meanings are scattered throughout - WordNet turns this on its

head.

WordNeti entries are organized by conceptual relatedness.

Software can search these hierarchical networks to retrieve

synonyms, calculate linguistic similarity, and so on. WordNet

contains more than 207,000 word senses, and it has become a

linchpin for natural language research referenced by a million-

plus web pages.

WordNet is freely downloadable and may be used in commercial. However, WordNet

displays its full power more dramatically in search engines and text analysis software.

These latter systems disambiguate word usage, index and summarize documents,

analyze discourse and assess essays. WordNet can be used to support information

extraction systems, to help correct textual material, and to build custom ontologies and

to drive linguistic research.

In this paper we’ll provide an overview of WordNet – its acquisition, licensing, design,

its varying implementations and its functionality. We’ll present two software examples

that retrieve WordNet ‘coordinate terms’ (helpful in expanding the semantic scope of a

retrieval), and we’ll review the role of query expansion in search applications.

Acquiring and installing WordNet

The latest version of WordNet (v2.1) was released in March 2005 for Linux/Unix and for

Windows (the latter is our focus here). The 18-megabyte install package contains

WordNet’s databases, API, and a desktop application that navigates this information.

WordNet’s licensing is non-restrictive: “WordNet is unencumbered, and may be used in

commercial applications in accordance with (its) license agreement”. The agreement

requires inclusion of a copyright statement wherever WordNet is used, and specifies

that all rights to WordNet’s software, database and documentation remain with

Princeton University, where WordNet was developed at the Cognitive Science lab.

email

http://wordnet.princeton.edu/obtain
http://wordnet.princeton.edu/license
mailto:drew.hamre@lexana.net?subject=WordNet

For a tangible introduction to WordNet, users can experiment with the bundled desktop

application1. Below, we’ve used this application to search for the term ‘gladiola’, and then

requested that WordNet climb the semantic hierarchy where ‘gladiola is a kind of…’.

Figure 1: WordNet's desktop application

The words in the above hierarchy are linked through a single type of linguistic relation:

hypernyms2 (‘is a kind of’). However, WordNet also captures more than 20 additional

relationship types, a trait that separates it from a simple thesaurus. Embedded in

WordNet’s design is the strong assumption that these relationships vary by parts of

1 You may prefer to experiment with WordNet’s web interfaces (both basic and advanced), as these require

no local install. Another sophisticated web UI is the dynamic Java-powered display of VisualThesaurus.

2 A certain amount of jargon is unavoidable when using WordNet, especially for those terms that describe

linguistic relationships. For nouns, relationship types include hypernyms (is a kind of), hyponyms (is a part
of), coordinates (terms sharing the same hypernym), and meronyms (parts of term). Different parts of
speech are associated with different relationships. For example, adjectives include the relation ‘is a value of
…’ (e.g., white is a value of the relative darkness or lightness of a color).

In WordNet, particular senses of words are grouped into synsets (words that are interchangeable in some

context). The synset is central to WordNet’s design, and in fact WordNet has been described simply as “a
synset network connected by semantic relations” .

http://wordnet.princeton.edu/perl/webwn
http://www.golovchenko.org/cgi-bin/wnsearch
http://www.visualthesaurus.com/
http://wordnet.princeton.edu/gloss
http://www.ultrasw.com/alcock/tcs/devsig/01Jun2004/WordNet_files/frame.htm

speech. That is, the relationships that associate nouns with other nouns are different

from the relationships that link, say, adjectives with other adjectives.

WordNet’s presumption about the fundamental differences among parts of speech

extends to the physical design of its database (below). By default, WordNet’s installer

builds the following directory tree beneath \Program Files\WordNet\ to include

databases, executables, API source (written in generic C) and documentation.

Figure 2: WordNet 2.1 installation, showing database sub-directory

WordNet’s data are stored in files that use a proprietary indexed format. Two design

details are noteworthy: (1) different Parts of Speech (POS) are stored separately, and

(2) each POS database is built from two component files -- data and index (discussed

below). Other files provide navigation support.

WordNet entries may be composed of multiple words (e.g., ‘turning point’ or ‘brand

name’, a form WordNet calls a collocation). Note that WordNet contains only nouns,

verbs, adverbs and adjectives. WordNet does not include function words (the, an, and

so on), pronouns, domain-specific language (e.g., SQL), or common product names.

Index files for WordNet are alphabetized lists of all words for that POS. Each index

entry is followed by a list of byte offsets into the corresponding data file, one for each

synset containing the word. Developers who reformat these files typically identify and

list each item in the synset, insert each member of the synset list as a separate entry

in the database, and for each member of the synset insert each of the other synset

members in a related field.

Because of its complexity, WordNet’s software (which includes low-level I/O routines)

must be modified and re-released with each new iteration of the data files. WordNet’s

complexity -- and the desire to extend its coverage to include specialized terminology

http://www.edict.com.hk/StudyGuide/VirtualClassroom/about_the_lexicon.html

and common brand names -- has spurred interest in re-architecting the system for

other more easily modified environments, including relational.

Relational implementations of the WordNet data stores

Several independent projects have converted WordNet’s data stores into relational

formats. Their common strategy is to parse WordNet's native files and emit a script of

corresponding SQL INSERT statements to load relational tables. Such efforts include a)

the WORDNET2SQL project, b) a MySQL conversion, c) a SQL Server conversion, and

d) WNSQLBUILDER.

Database designs differ for these relational projects (and some are quite complex), but

the WORDNET2SQL schema is among the most intelligible.

Figure 3: A relational implementation of WordNet (WORDNET2SQL project)

The core entities in the WORDNET2SQL implementation are:

 Word – ASCII-encoded written representation of any sequence of characters that

we associate a meaning with.

 Sense - Association between a word and the semantic information it carries

(expressed here in the synset table). Words may have multiple senses.

 Synset – WordNet’s basic entity of semantic information, possibly containing

several word senses that can be considered synonymous within a particular

context.

 Lexrel – Expresses lexical relations that hold between usages of certain words.

Relation types include hyponym, hypernym, antonym, and so on.

 Semrel – Expresses semantic relations that hold between synsets, including relation

types like hyponym, hypernym, antonym, and so on.

We’ll use a similar schema below (in our SQL Server-based alternative) to explore a

common use of WordNet in information retrieval systems: query expansion.

An exemplary use of WordNet: Query expansion

Search engines and other document retrieval systems balance two conflicting design

goals: recall (returning all relevant pages) and precision (returning only relevant

pages). The problem is complicated by the queries themselves, which tend to be brief

and variable (as less than 25% of users use identical terms to describe a concept).

http://wordnet.princeton.edu/links
http://www.srcf.ucam.org/~rb432/bergmair.cjb.net/htdocs/pub/adt-rep.www/adt-rep.html
http://www.androidtech.com/html/wordnet-mysql-20.php
http://www.objectgraph.com/dictionary/blog/archive/2005_01_01_archive.html
http://wnsqlbuilder.sourceforge.net/
http://wnsqlbuilder.sourceforge.net/schema.html
http://www.oracle.com/technology/products/text/htdocs/imt_quality.htm

Query expansion addresses this problem by programmatically embellishing the original

query with related search terms. For example, if a user requested all documents that

matched “gladiola”, the query might be expanded to “gladiola, gladiolus, glad, sword

lily”. If coordinate3 terms were used, the query would be extended further with “iris,

flag, fleur-de-lis, blackberry-lily, leopard lily, crocus, freesia and corn lily”.

Different expansion techniques (knowledge-based, statistical, linguistic) have been

studied, and results are mixed at best. It’s generally held that indiscriminate query

expansion can lead to loss of precision or even hurt recall; the major causes of error

are word sense ambiguity and lack of domain-specific precision in WordNet’s general

purpose vocabulary. Despite the recognized pitfalls, query expansion is widely used

(even by Google, as we’ll see below). WordNet-based query expansion plays at least a

supporting role in many of these systems.

Techniques for WordNet-based query expansion: Two examples

Following are two WordNet-based query expansion examples, illustrating how to

navigate both WordNet’s native data store and a relational variation. In each, the

strategy will be to look up search words in WordNet, and then retrieve related terms

(synonyms and coordinates). A complete solution would then fold these additional terms

into the query, with weights deprecated relative to the original search terms.

Both samples are implemented using Microsoft technologies (Visual Basic .NET and SQL

Server) – a decision that often proves a hindrance rather than a help, as these tools

aren’t widely supported in natural language researchii.

Searching native WordNet data stores from VB.NET

WordNet’s API isn’t directly callable from either COM or .NET, so third-party tools are

used to bridge these particular interfaces. Therefore, our sample software will require

that we load (in addition to WordNet 2.1) a just-released third-party library4 of .NET

objects (WordNet.NET) that access the native WordNet 2.1 data stores. The sample

solution includes this third-party WordNet.NET project, plus our custom VB.NET

project. Code snippets from the latter project are given below (and note that a

different, unexpurgated example is here).

The following code highlights techniques including: a) instantiation of the WordNet

access classes, b) the initial term lookup (.OvervewFor method), c) the determination

of POS (and note a full implementation would need to allow for multiple senses in

multiple POSs – e.g., ‘train/verb-practice’ vs. ‘train/noun-conveyance), d) the retrieval

of appropriate relation types for the relevant POS (.Opt collection), and e) the search

for terms linked by a selected relationship type (.Search method).

Imports WordNetClasses.WN ' Import interface library

' WordNet 2.1 datafile path
Private sDictPath As String = "C:\Program Files\WordNet\2.1\dict\"

Private Sub cmdLookup_Click()

3 Coordinates have the same hypernym; that is, they share parent nodes in the lexical hierarchy.

4 The .NET conversion was completed by Troy Simpson, based on initial work by Malcolm Crowe. The

conversion targets .NET Framework 1.1 (with a 2.0 conversion underway). Libraries are written in C#, and
the download package includes all source files. The libraries may be redistributed and/or modified under
terms of the GNU Lesser General Public License. The current developer has stated his intent to redesign the
class libraries as part of the 2.0 conversion.

http://www.cs.um.edu.mt/~csaw/CSAW04/Presentations/chris_staff.ppt
http://www.csc.calpoly.edu/~fkurfess/Courses/581/S01/Slides/Knowledge-Organization.ppt
http://wordnet.princeton.edu/links#local
http://wordnet.princeton.edu/obtain
http://opensource.ebswift.com/WordNet.Net/
http://opensvn.csie.org/WordNetDotNet/trunk/Samples/vb/Desktop%20Sample/

 Private oWNC As WordNetClasses.WN = New WordNetClasses.WN(sDictPath) ‘(a)

 ' - Locate definition of word (noun presumed)
 oWNC.OverviewFor(sInput, "noun", bIsNoun, oWNSSNoun, arArrayList) ‘(b)
 ' - arArrayList carries returned definition
 ShowResults(arArrayList)
 ' - Load all search relations for nouns
 Dim opt As Wnlib.Opt
 Dim posNoun As Wnlib.PartOfSpeech = Wnlib.PartOfSpeech.of("noun")
 For iOpt = 0 To Wnlib.Opt.Count - 1
 opt = opt.at(iOpt)
 If (opt.at(iOpt).pos Is posNoun) Then
 'Found new relationship type for nouns ‘(c)
 End If
 Next iOpt
End Sub

Private Sub Search(sSearchLabel As String)
 Dim opt As Wnlib.Opt
 For iOpt = 0 To Wnlib.Opt.Count - 1
 opt = opt.at(iOpt)
 If (opt.at(iOpt).label = sSearchLabel) Then ‘(d)
 Dim oSearch As Wnlib.Search = New Wnlib.Search(txtInput.Text, True, _ ‘(e)
 opt.pos, opt.sch, 0)
 ' oSearch.buf returns search results (must accumulate)
 sOutput = sOutput & oSearch.buf
 End If
 Next iOpt
End Sub

If we add a simple UI (wherein relationship types are selected via a drop-down), we

can request coordinate terms (hyponyms of the search term’s hypernyms), and thus

retrieve the raw material with which to expand a user query. Shown below are the

coordinates for ‘gladiola’.

Figure 4: VB.NET retrieving coordinate terms from WordNet

We should flag two issues. First, the hierarchic formatting characters (line breaks, ‘=>’,

‘->’) are inserted by the retrieval library itself, not the UI layer. (Perhaps this behavior

will be changed as part of the library’s V2.0 re-design.) Second, we’ve chosen a sample

search term (‘gladiola’) that has only one sense, thus hiding the complexity that would

result for search terms with multiple senses.

Searching SQL Server-based relational WordNet

Princeton’s WordNet website lists several ports made by unaffiliated developers to

relational systems (chiefly to MySQL). Although a port to Microsoft’s SQL Server is not

among those listed, several have been released on the web. The schema for the

implementation5 used below is similar to the WordNet2SQL schema (see Figure 3,

above).

The following T-SQL code retrieves coordinate terms from this WordNet/SQL Server

database (unexpurgated sample).

DECLARE @synsetno int

DECLARE @synsetno_hyp int

-- Get the synset for gladiola (word->sense->synset)

SET @synsetno = (

 SELECT TOP 1 sy.synsetno FROM synset sy, sense se, word w

 WHERE w.lemma = 'gladiola' AND

 w.wordno = se.wordno AND

 se.synsetno = sy.synsetno)

PRINT @synsetno

-- Get the hypernym of this synset

SET @synsetno_hyp = (

 SELECT TOP 1 sr.synset2 FROM semrel sr

 WHERE sr.reltype = 2 AND

 (synset1 = @synsetno))

PRINT @synsetno_hyp

-- Get all words for all senses in hyponym synsets for the hypernym

SELECT w.* FROM word w

WHERE w.wordno IN

 (SELECT se.wordno from sense se

 WHERE se.synsetno IN

 (SELECT sr.synset2 FROM semrel sr

 WHERE sr.reltype = 3 AND

 sr.synset1 = @synsetno_hyp)

)

In the above, our first query retrieves the synset ID associated with the search term

(and note the ‘TOP 1’ restriction is merely a kludge to enforce our single-sense

simplification). The second query retrieves the hypernym’s synset. The third query

(with nested SELECTs) descends along this chain to retrieve any words associated with

the hypernym’s hyponym synsets. These coordinate terms would then be used to

embellish and expand a user query, as discussed earlier.

5 The SQL Server implementation of WordNet is a work in progress. To load this information into SQL Server

2000: a) define an empty database called ‘WordNet20’ with an initial space allocation of 50-megabytes; b)
set the recovery model for the database to ‘Bulk-Logged’; c) edit the table creation script so that field
‘description’ in table ‘reltype’ is length 80, not 30; d) execute the table creation script against the empty
WordNet20 database; and then e) run the remaining load scripts in the following order (after inserting ‘SET
NOCOUNT ON’ as the first line in each script): word, synset, sample, sense, lexrel, semrel, adjmod, frame,
lexname, reltype, and verbframe. The indexing script contains errors, but need not be executed to
demonstrate the functionality shown here.

http://www.objectgraph.com/dictionary/blog/archive/2005_01_01_archive.html

A commercial role for query expansion?

As noted above, simple forms of query expansion are generally held to aid recall

(though not always) and to hurt precision; key research has been carried out by Ellen

Voorhees. The results are laid to difficulties in choosing appropriate senses for the

search term (as disambiguation remains an open issue in language research). In fact,

Voorhees and others have concluded that a) for short queries when disambiguation is

perfect, then WordNet expansion does improve performance. However, if

disambiguation isn’t perfect (and it rarely is), then expansion can diminish recall and

precision.

Despite the hurdles, WordNet-based query expansion remains a vital topic among

researchers. Successful techniques include systems that use WordNet expansion only

for disambiguated terms, or for libraries where the topic domain is restricted. For

example, retrieval scores for a geographic information system were improved by pre-

indexing documents with WordNet expansion terms.

Explicit query expansion in Google and MySQL

Query expansion is commonly used within the search industry. For example, Google

allows users to request query expansion using the tilde (‘~’) operator. Google’s search

engine then includes synonym suggestions for words preceded by this tilde (for

example, ‘~inexpensive’ will also match ‘cheap’, ‘affordable’, ‘low cost’, and so on).

Google has applied for a patent covering certain types of automatic query expansion.

Among prominent DBMSs, MySQL now supports query expansion retrieval syntax:

mysql> SELECT * FROM articles

 -> WHERE MATCH (title,body) AGAINST ('database');

+----+-------------------+--+

| id | title | body |

+----+-------------------+--+

| 5 | MySQL vs. YourSQL | In the following database comparison ... |

| 1 | MySQL Tutorial | DBMS stands for DataBase ... |

+----+-------------------+--+

2 rows in set (0.00 sec)

mysql> SELECT * FROM articles

 -> WHERE MATCH (title,body)

 -> AGAINST ('database' WITH QUERY EXPANSION);

+----+-------------------+--+

| id | title | body |

+----+-------------------+--+

| 1 | MySQL Tutorial | DBMS stands for DataBase ... |

| 5 | MySQL vs. YourSQL | In the following database comparison ... |

| 3 | Optimizing MySQL | In this tutorial we will show ... |

+----+-------------------+--+

3 rows in set (0.00 sec)

Other WordNet opportunities

A recent overview of natural language processing lists many open research problems.

Some problems are ‘small’ (information extraction (database filling), question

answering, thesaurus/key phrase generation) and some are ‘large’ (document

summarization, document categorization, clustering and topic detection).

WordNet is positioned to play a role in all of these efforts, in addition to supporting

more prosaic functionality in everyday business applications. With sophisticated text

processing finally capturing financial attention (e.g., the $1.85-billion acquisition of

http://citeseer.ist.psu.edu/context/74283/0
http://citeseer.ist.psu.edu/context/74283/0
http://scholar.google.com/scholar?as_q=wordnet+&num=10&btnG=Search+Scholar&as_epq=query+expansion&as_oq=&as_eq=&as_occt=any&as_sauthors=&as_publication=&as_ylo=2004&as_yhi=2005&as_allsubj=all&hl=en&lr=
http://www.cs.uic.edu/~sliu/p096-liu.pdf
http://www.clef-campaign.org/2005/working_notes/workingnotes2005/buscaldi05.pdf
http://www.googleguide.com/crafting_queries.html#tilde
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=5&f=G&l=50&co1=AND&d=PG01&s1=google.AS.&OS=AN/google&RS=AN/google
http://dev.mysql.com/doc/refman/5.0/en/fulltext-query-expansion.html
http://nlp.stanford.edu/~manning/talks/OracleNLP.ppt

AskJeeves), and with growing recognition of the sheer volume of corporate textual data

and its value, WordNet is a welcome addition to a developer’s toolbox.

Summary

The freely-available WordNet database provides an English lexicon (glossary) with

more than 207,000 word senses, and also captures the semantic relationships among

these words. Software can navigate these conceptual networks to retrieve synonyms,

calculate linguistic similarity, categorize text, and so on.

This paper discusses WordNet’s installation, design, functionality, and its potential

application to common business problems. It includes WordNet samples to expand the

semantic scope of a query by retrieving ‘coordinate terms’ for a search string.

Resources

The WordNet homepage at Princeton University
http://wordnet.princeton.edu/

Introduction to WordNet: An On-line Lexical Database by George A. Miller, Richard Beckwith,
Christiane Fellbaum, Derek Gross, and Katherine Miller
http://wordnet.princeton.edu/5papers.pdf

WordNet Bibliography (now maintained by Andras Csomai)

http://mira.csci.unt.edu/~wordnet/

Representing the Meaning of Documents by Jimmy Lin
http://www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R-2005-Spring/lecture5.pdf

Acknowledgement

Thanks to reviewers for their time and suggestions; any inaccuracies remain mine.

Drew Hamre is a principal of lexana\net and lives in Golden Valley, Minnesota.

i WordNet 2.1 Copyright 2005 by Princeton University. All rights reserved.

Cognitive psychologist George A. Miller has directed WordNet’s development since its inception. Dr. Miller,

age 85, remains the McDonnell Distinguished University Professor of Psychology, Emeritus, at Princeton
University. Fifty-years ago, Dr. Miller wrote a classic paper on human memory (The Magical Number Seven,
Plus or Minus Two: Some Limits on Our Capacity for Processing Information). This paper was one of the first
applications of information theory to cognitive processes (and almost certainly the first appearance of terms
like bits and channel capacity in The Psychological Review). Miller’s paper – and convergent linguistic
research by Noam Chomsky – undercut Skinnerian behaviorism.

ii The software samples shown here are Microsoft-centric (VB.NET and SQL Server). However, among

WordNet developers (and more generally, among University research communities) Microsoft development is
increasingly anomalous. The code emerging from research universities today is overwhelmingly written for
Linux, Java, and various other open platforms. For example, Open Source text processing software includes
(in addition to WordNet) tools like the Lucene search engine, spell checkers, text mining algorithms, and
named-entity recognition

http://wordnet.princeton.edu/
http://wordnet.princeton.edu/5papers.pdf
http://mira.csci.unt.edu/~wordnet/
http://www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R-2005-Spring/lecture5.pdf
mailto:drew.hamre@lexana.net
http://www.well.com/user/smalin/miller.html
http://www.well.com/user/smalin/miller.html
http://www.cs.utk.edu/tmw03/keynote.ppt

